数学家的名人故事

时间:2024-05-21 16:23:06 名人故事 我要投稿

数学家的名人故事

数学家的名人故事1

  法国科学家拉普拉斯(1749—1827)重新提出这个假设,并且从力学原理出发,用严密的数学推理证明了这个学说的科学性,进而带来了宇宙观的重大变革。

数学家的名人故事

  拉普拉斯出生在法国诺曼底的波蒙镇,小时候家境贫寒,靠邻居的帮助才完成学业。拉普拉斯有数学天才,上大学期间深受教授们的赞赏。18岁大学毕业,由著名数学家达兰贝介绍到巴黎陆军学校担任数学教授。

  长期以来,科学家一直受“太阳系如何形成”,“地球何以会绕太阳运转” 这些问题的困扰,就连著名科学家牛顿也难以回答,最后只好求助神学,把运动的最终原因归于“上帝的第一推动”。拉普拉斯对宇宙形成问题进行了详细的研究,写下了《宇宙体系论》和《天体力学》两书。他认为太阳系是从一团原始星云中形成的,原始星云由于运动和质点相互吸引而形成原始火球,原始火球进一步收缩,并且由于吸引和排斥的'综合作用,逐渐分化形成太阳系各行星,最后构成了现在的太阳系。他对太阳系的特点进行推算,深刻地解释了太阳系各行星的运动和轨道。他的学说逐渐为科学界所承认。

  星云学说带来了宇宙观的变革,它指出宇宙是在自然界自身运动中发展产生的,将土帝驱逐出宇宙。当拿破仑问拉普拉斯为什么他的学说中没有上帝时,拉普拉斯自豪地说:“我不需要那个假设”。这成为当时无神论者藐视上帝的名言。

数学家的名人故事2

  这个榜单的其他数学家在各个数学分支都有大量的贡献,而纳皮尔只有一个发明,但这个发明极为重要:对数。简单的说,一个数的对数让我们知道了这个数额数量级。

  用现在的话来说,对数有一个“底数”,一个数的对数就是得到一个数,使得这个底数的那么多次方等于这个数。比如,以10为底数,10的对数是1,100的对数是2。因为10的1次方等于10,10的平方,就是2次方等于100。

  对数之所以这么有用,是一个重要原因是由于它的一些性质:对数能把乘法变成加法,把除法变成减法。更确切的讲,两个数乘积的对数等于这两个数分别取对数在加起来。同样,两数商的`对数等于两数对数的差。

  在没有计算机的年代,这个性质打打降低计算的难度。对两个非常大或者非常精细的小数做乘除法要比做加减法的时间长得多。所以,如果有人要对两个大数做乘法,他可以先查对数表的得到两个数的对数,在加起来,然后再用对数表返查得到结果。

  一些计算工具,比如说计算尺,利用对数来做快速计算。这种快速计算器在科学和航海中派上了打用场,我们可以非常快得做一些大数的计算。

  很多用数量级来衡量计量单位也是用对数来衡量的。比如地震中的里氏震级,以及衡量声音大小的分贝。

数学家的名人故事3

  泰勒斯生于公元前624年,是古希腊第一位闻名世界的大数学家.他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,泰勒斯便专心从事科学研究和旅行.他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题.他的家乡离埃及不太远,所以他常去埃及旅行.在那里,泰勒斯认识了古埃及人在几千年间积累的丰富数学知识.他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已.

  泰勒斯的方法既巧妙又简单:选一个天气晴朗的日子,在金字塔边竖立一根小木棍,然后观察木棍阴影的长度变化,等到阴影长度恰好等于木棍长度时,赶紧测量金字塔影的长度,因为在这一时刻,金字塔的高度也恰好与塔影长度相等.也有人说,泰勒斯是利用棍影与塔影长度的比等于棍高与塔高的比算出金字塔高度的.如果是这样的话,就要用到三角形对应边成比例这个数学定理.泰勒斯自夸,说是他把这种方法教给了古埃及人但事实可能正好相反,应该是埃及人早就知道了类似的方法,但他们只满足于知道怎样去计算,却没有思考为什么这样算就能得到正确的答案.

  泰勒斯最先证明了如下的定理:

  1.圆被任一直径二等分.

  2.等腰三角形的'两底角相等.

  3.两条直线相交,对顶角相等.

  4.半圆的内接三角形,一定是直角三角形.

  5.如果两个三角形有一条边以及这条边上的两个角对应相等,那么这两个三角形全等.

  这个定理也是塞乐斯最先发现并最先证明的,后人常称之为塞乐斯定理.相传泰勒斯证明这个定理后非常高兴,宰了一头公牛供奉神灵.后来,他还用这个定理算出了海上的船与陆地的距离.

数学家的名人故事4

  华罗庚出生在一个摆杂货店的家庭,从小体弱多病,但他凭借自我一股坚强的毅力和崇高的追求,最终成为一代数学宗师。

  少年时期的华罗庚就异常爱好数学,但数学成绩并不突出。19岁那年,一篇出色的文章惊动了当时的数学家熊庆来。从此在熊庆来先生的引导下,走上了研究数学的道路。晚年为了国家经济建设,把纯粹数学推广应用到工农业生产中,为祖国建设事业奋斗终身!华爷爷悉心栽培年轻一代,让青年数学家茁壮成儿使他们脱颖而出,工作之余还不忘给青多年朋友写一些科普读物。下头就是华罗庚爷爷以往介绍给同学们的`一个趣味的数学游戏:有位教师,想辨别他的3个学生谁更聪明。他采用如下的方法:事先准备好3顶白帽子,2顶黑帽子,让他们看到,然后,叫他们闭上眼睛,分别给戴上帽子,藏起剩下的2顶帽子,最终,叫他们睁开眼,看着别人的帽子,说出自我所戴帽子的颜色。

  3个学生互相看了看,都踌躇了一会,并异口同声地说出自我戴的是白帽子

  聪明的小读者,想想看,他们是怎样明白帽子颜色的呢“为了解决上头的伺题,我们先研究“2人1顶黑帽,2顶白帽”问题。因为,黑帽仅有1顶,我戴了,对方立刻会说自我戴的是白帽。但他踌躇了一会,可见我戴的是白帽。

  这样,“3人2顶黑帽,3顶白帽”的问题也就容易解决了。假设我戴的是黑帽子,则他们2人就变成“2人1顶黑帽,2顶白帽”问题,他们能够立刻回答出来,但他们都踌躇了一会,这就说明,我戴的是白帽子,3人经过同样的思考,于是,都推出自我戴的是白帽子。看到那里。同学们可能会拍手称妙吧。之后,华爷爷还将原先的问题复杂化,“n个人,n—1顶黑帽子,若干(不少于n)顶白帽子”的问题怎样解决呢运用同样的方法,便可迎刃而解。他并告诫我们:复杂的问题要善于“退”,足够地“退”,“退”到最原始而不失去重要性的地方,是学好数学的一个诀窃。

数学家的名人故事5

  欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家。生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt)。父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶。但父亲却执意让他攻读神学,以便将来接他的班。幸运的是,欧拉并没有走父亲为他安排的路。父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(Johann Bernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊。由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家)。他俩经常给小欧拉讲生动的数学故事和有趣的数学知识。这些都使欧拉受益匪浅。1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉。当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课。约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来。他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手。在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路。1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金。这标志着欧拉的羽毛已丰满,从此可以展翅飞翔。

  欧拉的成长与他这段历史是分不开的。当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式。直至晚年,他还能复述年轻时的笔记的全部内容。高等数学的计算他可以用心算来完成。

  尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象。由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路。这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(J.L.Lagrange,1736.1.25-1813.4.10)。

  欧拉本人虽不是教师,但他对教学的影响超过任何人。他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作。他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响。有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书。欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂。而欧拉的文字既轻松易懂,堪称这方面的典范。他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色。他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书。他编写的初等代数和算术的教科书考虑细致,叙述有条有理。他用许多新的思想的叙述方法,使得这些书既严密又易于理解。欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的。他证明了任一非零实数R有无穷多个对数。欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的。欧拉的定义使三角学跳出只研究三角表这个圈子。欧拉对整个三角学作了分析性的研究。在这以前,每个公式仅从图中推出,大部分以叙述表达。欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式。欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化。欧拉得到的著名的公式:

  又把三角函数与指数函联结起来。

  在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号。如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用 ∑表示求和,用 i表示虚数等。圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行。而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式 中。 欧拉在研究级数时引入欧拉常数C, 这是继π 、e 之后的又一个重要的数。

  欧拉不但重视教育,而且重视人才。当时法国的拉格朗日只有19岁,而欧拉已48岁。拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题。后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名。

  欧拉19岁大学毕业时,在瑞士没有找到合适的工作。1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功。这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才。已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯。在这种情况下,欧拉离开了自己的祖国。由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手。在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位。1731年,又被委任领导理论物理和实验物理教研室的工作。1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人。

  在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作。

  古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师。1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念。

  同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学。并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作。1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖。在这篇文章中,欧拉把热本质看成是分子的振动。

  欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层。他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师。他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论。

  正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就。欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献。如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度。另外,他还为科学院机关刊物写评论并长期主持委员会工作。他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析。1735年,欧拉着手解决一个天文学难题──计算慧星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成)。由于欧拉使用了自己发明的新方法,只用了三天的时间。但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明。这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作。但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷。事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林。尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长。1759年成为柏林科学院的领导人。在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用。

  他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的。如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的。此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和慧星的运动理论》、《月球运动理论》、《日蚀的计算》等著作。在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地。他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人。他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科。比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金。不仅如此,他还为普鲁士王国解决了大量社会实际问题。1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养。后来这些通信整理成《致一位德国公主的`信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话。

  自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功。她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职。欧拉自然成了她主要聘请的对象。1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件。

  这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟。除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作。然而,厄运再次向他袭来。由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中。但欧拉是坚强的,他用口授、别人记录的方法坚持写作。他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解。1768年,《积分学原理》第一卷在圣彼得堡出版。1770年第三卷出版。同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来。1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中。在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来。欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬。种种磨难,并没有把欧拉搞垮。大火以后他立即投入到新的创作之中。资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究。欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流。欧拉总是把推理过程想得很细,然后口授,由他的长子记录。他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上。1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中。从而创立了一个新的分支──变分法。另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究。后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论。为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜。研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》。欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报。就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的。

  作为这样一位科学巨人,在生活中他并不是一个呆板的人。他性情温和,性格开朗,也喜欢交际。欧拉结过两次婚,有13个孩子。他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事。

  欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻。1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了"。一位科学巨匠就这样停止了生命。

  历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律。

  由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉。大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师。"被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它"。

数学家的名人故事6

  刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位。他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。

  《九章算术》约成书于东汉之初,共有246个问题的解法。在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明。在这些证明中,显示了他在多方面的创造性的贡献。他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的'立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法。在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法。他利用割圆术科学地求出了圆周率π=3。14的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。

  《海岛算经》一书中,刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。

  刘徽思想敏捷,方法灵活,既提倡推理又主张直观。他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。

  刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚。他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。

数学家的名人故事7

  陈省身1911年10月28日生于浙江嘉兴秀水县,美籍华人,20世纪的几何学家。少年时代即显露数学才华,在其数学生涯中,几经抉择,奋力攀登,终成辉煌。他在整体微分几何上的卓越贡献,影响了整个数学的发展,被杨振宁誉为继欧几里德、高斯、黎曼、嘉当之后又一里程碑式的人物。曾先后主持、创办了三大数学研究所,造就了一批世界知名的数学家。晚年情系故园,每年回天津南开大学数学研究所主持工作,培育新人,只为实现心中的一个梦想:使中国成为21世纪的数学大国。

  陈省身9岁考入秀州中学预科一年级。这时他已能做相当复杂的数学题,并且读完了《封神榜》、《说岳全传》等书。1922年秋,父亲到天津法院任职,陈省身全家迁往天津,住在河北三马路宙纬路。第二年,他进入离家较近的扶轮中学(今日津铁路一中)。陈省身在班上年纪虽小,却充分显露出他在数学方面的才华。陈省身考入南开大学理科那一年还不满15岁。他是全校闻名的少年才子,大同学遇到问题都要向他请教,他也十分乐于帮忙别人。一年级时有国文课,教师出题做作文,陈省身写得很快,一个题目往往能写出好几篇资料不一样的文章。同学找他要,他自我留一篇,其余的都送人。到发作文时他才发现,给别人的那些得的分数反倒比自我那篇要高。

  他不爱运动,喜欢打桥牌,且牌技极佳。图书馆是陈省身最爱去的.地方,常常在书库里一呆就是好几个小时。他看书的门类很杂,历史、文学、天然科学方面的书,他都一一涉猎,无所不读。入学时,陈省身和他父亲都认为物理比较切实,所以打算到二年级分系时选物理系。但由于陈省身不喜欢做实验,既不能读化学系,也不能读物理系,仅有一条路——进数学系。

  数学系主任姜立夫,对陈省身的影响很大。数学系1926级学生仅有5名,陈省身和吴大任是全班秀的。吴大任是广东人,毕业于南开中学,被保送到南开大学。他原先进物理系,之后被姜立夫的魅力所吸引,转到了数学系,和陈省身十分要好,成为终生知己。姜立夫为拥有两名如此出色的弟子而高兴,开了许多门在当时看来是很高深的课,如线性代数、微分几何、非欧几何等等。二年级时,姜立夫让陈省身给自我当助手,任务是帮教师改卷子。起初只改一年级的,之后连二年级的都让他改,另一位数学教授的卷子也交他改,每月报酬10元。第一次拿到钱时,陈省身不无得意,这是他第一次的劳动报酬啊!

  考入南开后,陈省身住进八里台校舍。每逢星期日,他从学校回家都要经过海光寺,那里是日本军营。看到荷枪实弹的日本鬼子那副耀武扬威的模样,他心里很不是滋味,不禁快步走开。再往前便是南市“三不管”,是个乌烟瘴气的地方,令他万分厌恶。从家回到学校时,又要经过南市、海光寺,直到走进八里台学校,他才感到松了口气。

数学家的名人故事8

  陈景润(1933~1966)

  中国数学家、中国科学院院士。福建闽候人。

  陈景润出生在一个小职员的家庭,上有哥姐、下有弟妹,排行第三。因为家里孩子多,父亲收入微薄,家庭生活非常拮据。因此,陈景润一出生便似乎成为父母的累赘,一个自认为是不爱欢迎的人。上学后,由于瘦小体弱,常受人欺负。这种特殊的生活境况,把他塑造成了一个极为内向、不善言谈的.人,加上对数学的痴恋,更使他养成了独来独往、独自闭门思考的习惯,因此竟被别人认为是一个 “怪人”。陈景润毕生后选择研究数学这条异常艰辛的人生道路,与沈元教授有关。在他那里,陈景润第一次知道了哥德巴赫猜想,也就是从那里,陈景润第一刻起,他就立志去摘取那颗数学皇冠上的明珠。1953年,他毕业于厦门大学,留校在图书馆工作,但始终没有忘记哥德巴赫猜想,他把数学论文寄给华罗庚教授,华罗庚阅后非常赏识他的才华,把他调到中国科学院数学研究所当实习研究员,从此便有幸在华罗庚的指导下,向哥德巴赫猜想进军。1966年5月,一颗耀眼的新星闪烁于全球数学界的上空——陈景润宣布证明了哥德巴赫猜想中的^1+2^;1972年2月,他完成了对^1+2^证明的修改。令人难以置信的是,外国数学家在证明^1+3^时用了大型高速计算机,而陈景润却完全靠纸、笔和头颅。如果这令人费解的话,那么他单为简化^1+2^这一证明就用去的6 麻袋稿纸,则足以说明问题了。1973年,他发表的著名的^陈氏定理^,被誉为筛法的光辉顶点。

  对于陈景润的成就,一位著名的外国数学家曾敬佩和感慨地誉:他移动了群山!

数学家的名人故事9

  女数学家王贞仪(1768—1797),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。

  从她遗留下来的著作能够看出,她是一位从事天文和筹算研究的女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状的计算工具。一般是竹制或木制的一批同样长短粗细的小棒,也有用金属、玉、骨等质料制成的,不用时放在特制的算袋或算子筒里,使用时在特制的算板、毡或直接在桌上排布。应用“算筹”进行计算的方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”的记述,此刻所见的.最早记载是《孙子算经》,至明朝筹算渐渐为珠算所代替。

  17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国的这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍的纳皮尔算筹乘除法,当时的读者认为容易了解,但与当时我国的乘除法筹算的方法相比,显得较繁杂,所以,数学家们没有使用西洋筹算,一向使用中国筹算法。今日的读者把中外筹算乘除法视为老古董,采用的是由外国传入的笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算的历史仅有100年。

数学家的名人故事10

  毕达哥拉斯(约公元前580年-500年),古希腊哲学家、数学家、天文学家。他在意大利南部的克罗托内建立了一个政治、宗教、数学合一的秘密团体--毕达哥拉斯学派,他们很重视数学,企图用数学来解释一切,毕达哥拉斯本人以发现勾股定理(西方称毕达哥拉斯定理)而著名,其实这一定理早已为巴比伦人和中国人所知,但最早的证明可归功于毕达哥拉斯学派。

  该学派还发现,若是奇数,则 构成直角三角形的三边,其实我们所称的勾股数。该学派将自然数分为若干类:奇数、偶数、完全数(即等于它的包括1而不包括它本身的.所有因数之和的数)亲和数、三角数(1、3、6、10……)、平方数(1、4、9、16……)、五角数(1、5、12、22……)等,又发现从1起连续奇数的和必为平方数。

  他们还发现了五种正多面体,在天文学和音乐理论上还有不少贡献,他的思想和学说对希腊文化有巨大影响。

数学家的名人故事11

  祖冲之祖籍河北,他的祖父和父亲都曾在南朝做官,因而他出生于南方。 晋朝末年,由于北方连年混战,中原地区的人口大量迁移到南方,促使长江流域的农业生产和社会经济各方面都有迅速的发展,祖冲之正是诞生在这样的时代环境里。祖家历代对天文历法都很有研究。在家庭的影响下,祖冲之从小便对天文学和数学发生了浓厚的兴趣。

  在青年时代,他便对刘歆、张衡、王蕃、刘徽等人的工作进行了深入细致的研究,驳正了他们的错误。以后他继续钻研,在科学技术方面作出极有价值的贡献。精确到小数点后第六位数的`圆周率,便是他其中最杰出的成就之一。在天文历法方面,他曾将自古代到他生活年代为止所有可以搜罗到的文献资料,全部整理了一遍,并且通过亲自观测和推算,做了深切的验证。他指出当时所流行的何承天(公元370—447年)编定的历法有许多严重的错误。因此他便开始编制另一种新的历法。

  宋大明6年(公元462年),33岁的祖冲之编好了新的历法“大明历”。这是一部最好的历法,但是却遭到了当时朝廷中最得势人物戴法兴的反对。许多官员惧怕戴法兴的势力,不敢对祖冲之新历作公正的评定。祖冲之为了坚持真理,勇敢地与戴法兴展开了辩论,他写了一篇有名的《驳议》,逐条驳斥了戴法兴的无理责难。这场辩论,实际上反映了当时科学发展过程中科学和反科学、进步和保守之间的尖锐斗争。戴法兴等人认为:历代流传下来的东西,都是古制,是不可革的,是“万世不易”的,他们认为天文历法不是“凡人”可以修改的,他们说:“非冲之浅虑妄可穿凿”,甚至进一步责骂祖冲之是“诬天背经”。祖冲之对他们提出了尖锐的反驳。他认为日月五星的运行“非出神怪”,“是有形可检,有数可推”,只要进行细心的观测和推算。孟子早先所说“千年之日至(夏至、冬至)可生而致”的话是完全可以做到的。祖冲之在《驳议》中写了两句非常有名的话“愿闻显据,以覆理实”,“浮词虚贬,窃非所惧”。他希望双方都拿出真实的证据,辨明真正的是非,至于造谣和中伤,那是他丝毫不怕的。由于种种阻碍,大明历一直到他死后十年,在梁朝才得以颁行(公元510年)。

  祖冲之除天文历法和数学之外,对机械方面也有研究,他制造过“指南车”和“千里船”,此外,他对音律也很精通,对古代的许多书籍进行过注释,他还写过十卷小说,他真称得上是一个多才多艺的科学家。关于他在数学方面的著作,最著名的要算是《缀术》,此外还有《九章算术译注》、《重差注》等等,但这些也都失传了。

  祖冲之的儿子祖暅也是一位杰出的数学家,他继承了祖冲之在数学和天文历法方面的工作,并进一步发扬光大了他父亲的成就。祖冲之的“大明历”就是经过祖暅三次建议之后才被梁朝采用的。关于球体体积的计算也是作为祖暅的工作流传下来的。祖暅终生好学不倦。传说他小的时候,专心读书,连打雷也不觉得,走路时思考问题,曾经撞到别人身上。

  祖冲之父子的名字,不仅在国内已是受到称道,在世界上也受到了应有的重视。

数学家的名人故事12

  德米特里?克里欧科夫是美国加州大学圣迭戈分校的数学高级研究员,不久前的一天上午,他驾车行驶到一个路口时,恰逢红灯亮起。正当他准备刹车时,不料鼻子突然发痒,接着便响亮地打了个喷嚏。他紧急刹车,车险些越过停车线。就在他为没有闯红灯而庆幸时,距他30米开外的一名执勤交警还是飞快地跑到他跟前,不由分说就开了一张400美元的罚款单。

  在加州大学圣迭戈分校,克里欧科夫可是以爱较真出了名的,对于从天而降的400美元罚款,他无论如何不能接受。于是亮出自己的撒手锏,连夜洋洋洒洒撰写了长达4页的辩护状,几天后气宇轩昂地走上法庭进行申诉,以证明自己的“清白”,要求法官无条件撤销对他的“错误罚款”。

  法庭上,克里欧科夫“义正词严”地指出:“给我开罚单的那名交警,是在停车标志30米之外看走了眼而错判我闯了红灯。而事实是,我根本就没有闯红灯。我认为,是3个巧合让那个警察误认为我闯了红灯。1.观察者目测的不是汽车沿道路行驶的直线速度,而是汽车行驶时相对警察所在那一点的角速度。这就像我们站在路边观察匀速前进的汽车一样,当车离你很远时,它看上去速度很慢;当它离你很近时,人们却误以为它开得飞快。2.汽车减速,随后又加速。3.短时间内,观察者的视线被外部对象阻碍。例如两辆汽车同时靠近停车线,其中一辆挡住了观察者的视线。而正是上述3个条件,才使那个交警因角度问题目测到的是角速度而非线速度,也就是说,站在垂直于汽车前行轨迹上一定距离的那个交警,才因此产生了‘汽车并未停下’的错觉。也正是那名警察对现实的感知能力没有正确地反映现实,才导致了我被无辜地罚款,所以罚款必须予以无条件撤销。”

  同时,克里欧科夫还向法庭展示了大量的图形和方程式,作为自己无罪的有力论据。

  近3个小时的论证,主审法官被克里欧科夫滔滔不绝的长篇大论绕晕了,多次要求停下来,让他解释他那一大套理论,但克里欧科夫却坚持要陈述完自己的.观点。最终,法官以克里欧科夫“有理有据的清晰陈述”为由,当庭撤销了对他的罚单。

  在赢取上诉后,克里欧科夫又将那篇为辩护写的论文发表在一家科技杂志上,不仅获得了强烈反响,而且还被该杂志评为特殊奖,奖金为400美元,与当时的错误罚款打了个平手。

  克里欧科夫谦虚地对媒体说:“我之所以能赢得这场官司,应该归功于那篇有理有据的论文。虽然如此,我还是希望大家能从论文中找出论据的不足,以便我能继续深入完善,使之成为公众今后维护自己正当权益的一种新方式。”

数学家的名人故事13

  他是十九世纪最伟大的代数几何学家,但是他大学入学考试重考了五次,每次失败的原因都是数学考不好。他大学几乎没能毕业,每次考不好都是为了数学那一科。他大学毕业后考不上任何研究所,因为考不好的科目还是——数学。数学是他一生的至爱,但是数学考试是他一生的恶梦。不过这无法改变他的伟大:课本上“共轭矩阵”是他先提出来的,人类一千多年来解不出“五次方程式的通解”,是他先解出来的。自然对数的“超越数性质”,全世界,他是第一个证明出来的人。他的一生证明“一个不会考试的人,仍然能有胜出的人生”,并且更奇妙的是不会考试成为他一生的祝福。

  埃尔米特数学并不是真的那么差劲,只是他认为,当时,他们当地的数学教学氛围死气沉沉,而数学课本就象一堆废纸,所谓的数学成绩好的.人,都是一些二流头脑的人,因为他们只懂得生搬硬套!所以他从小就是个问题学生,上课时老爱找老师辩论,尤其是一些基本的问题。他尤其痛恨考试;因为他一旦考糟了,老师就用木条打他的脚,这也是他痛悔数学考试的原因之一;他在后来的文章中写道:“达到教育的目的是用头脑,又不是用脚,打脚有什么用?打脚可以使人头脑更聪明吗?”

  在抵制考试的同时,埃尔米特又花了大量时间去看数学大师,如牛顿、高斯的原著,因为在他看来,只有在那里才能找到“数学的美,是回到基本点的辩论,那里才能饮到数学兴奋的源头。”他在年老时,回顾少年时的轻狂,写道:“传统的数学教育,要学生按部就班地,一步一步地学习,训练学生把数学应用到工程或商业上,因此,不重启发学生的开创性。但是数学有它本身抽象逻辑的美,例如在解决多次方方程式里,根的存在本身就是一种美感。数学存在的价值,不只是为了生活上的应用,也不应沦为供工程、商业应用的工具。数学的突破仍需要不断地去突破现有格局。

数学家的名人故事14

  华蘅芳(1833~1902) 中国清末数学家、翻译家和教育家。字若汀,生于道光十三年,卒于光绪二十八年。江苏常州金匮(今无锡市)人。出生于世宦门第。少年时酷爱数学,遍览当时的各种数学书籍。青年时游学上海,与著名数学家李善兰(字秋纫)交往,李氏向他推荐西方的代数学和微积分,他刻苦自学,这对他走上数学道路有重要的影响。咸丰十一年(1861)为曾国藩擢用,和同乡好友徐寿(字雪村)一同到安庆的军械所,绘制机械图并造出中国最早的轮船“黄鹄”号。他曾三次被奏保举,受到洋务派器重,一生与洋务运动关系密切,成为这个时期有代表性的科学家之一。同治四年(1865)曾国藩、李鸿章合奏创设江南制造局,华蘅芳参加了该局的计划和开创工作。同治七年(1868)江南制造总局内开设翻译馆,华蘅芳与徐寿积极从事,为介绍西方先进的科学技术,分门别类地进行系统译述,对近代科学知识特别是数学知识在中国的传播,起到了重要的作用。

  华蘅芳先后在江南制造总局和天津机器局担任提调,光绪二年(1876)在上海格致书院担任教习。他在晚年转向教育界,从事着述和教学。他对数、理、化、工、医、地以及音乐等学科有广博的学识,并注重科学研究。他编写了深入浅出的数学讲义和读本,以专着《学算笔谈》进行数学评论,对于培养人才和普及科学殊多贡献,成为有声望的一代学者。光绪十三年(1887)他曾在天津武备学堂中任教习,光绪十八年(1892)在湖北武昌主讲两湖书院。他的学生江蘅、杨兆]等以及胞弟华世芳(字若溪,1854~1905)受到他的影响都成为数学家。

  华蘅芳的治学精神反对历来算家喜“炫其所长而匿其所短”、只讲算法而“秘匿”算理的风气;他注重数学教育,曾说“吾果如春蚕,死而足愿矣”,把发展数学的希望寄托于后学;在数学评论中阐明了他的.数学教学思想,象“观书者不可反为书所役”等精辟见解,表明他的方法论中已具有辩证的内容;华蘅芳的哲学观点散见于着述之中,兼有唯心、唯物的成分,尚未形成思想体系。

  华蘅芳官至四品,但非从政。他不慕荣利,穷约终身,坚持了科学、教育的道路,与李善兰、徐寿齐名,同为中国近代科学事业的先行者。

数学家的名人故事15

  贫寒出身的老数学家

  复旦大学名誉校长、中国数学会名誉理事长、中国科学院院士的苏步青(-)是一位德高望重的老数学家。他除了当民盟中央参议委员会主任之外,也是中国第七、八届全国政协副主席。

  他出生在浙江省平阳县腾蛟区带溪乡的一个农民家庭,他父母生了13个子女,他是次子。童年就要帮助家人割草、喂猪、放牛。由于家庭贫穷,六岁未能上学。他每天放牛路过私塾,就偷偷跑到窗口去偷看偷听老师教书。后来父亲看到他这么爱念书,在他9岁时全家吃杂粮,省下大米,借了几块钱,挑了一担米,带他到离家100里的平阳县唯一的一所小学当插班生。

  他认识了一些字后,就自己找书看,读《三国演义》、《水浒传》,甚至谈狐说鬼小孩子不容易懂的《聊斋志异》也被他翻阅了一二十遍。

  振作读书发奋图强

  平阳县的语言有一个奇特的现象:在苏步青的乡下人们是讲闽南话,两三百年前,闽南漳州泉州南安有一批人为了避倭乱移民到那一带,因此在浙南闽北交界地区有一些人是讲温软闽南话,而在县城里的人是讲音量大而发音怪的温州话,这两种语言的差距就像意大利语和俄罗斯语。开始苏步青从穷山沟里来到县城,就像刘姥姥进大观园事事感到新奇,整天玩耍无心读书,再加上语言隔阂,结果期末考试,是全班32人中最后一名。

  第二年,离他家乡10多里的水头镇,办起了一所中心小学,他的父亲把他转到那儿上课,老师讲书是用闽南话,苏步青上课是听得懂。可是由于家穷被老师看不起,有一次在作文时,苏步青认真的写了一篇文情并茂的文章,老师却说他抄袭,后来问明老师仍不公正的批个“差”的分数,这损害了小苏步青的自尊心,以后他不听课,并尽情玩耍,当然这学年他又是考最后一名。

  第三年来了一个新的叫陈玉峰的老师,发现了他的问题,就劝告他应该人穷志不穷,努力读书好好向上,不然浪费了农民爸爸的血汗钱,辜负了父母对他读书识字的期望,以后目不识丁怎能改变贫苦的命运?

  苏步青看到陈老师对他有爱心及勉励,决定收敛贪玩的心,决定振作发奋图强,不要让陈老师失望。除了读课本之外,他也读了一些古典小说,并且开始读《东周列国志》,有些字不懂,他步行几十里山路,向人借《康熙字典》。放假,他就回家放牛,在牛背上他就背诵《千家诗》、《唐诗三百首》,他的记忆力特好,过了不久,他就能把杜甫、李白的诗背诵如流。这学年结束,他考得第一。以后求学,每次考试都是第一名。

  13岁那年春天,小学毕业,距离暑假考中学有半年的时间,就把《左传》从头到尾熟读。1914年,他以优秀成绩,考进了温州的浙江省第十中学。最初他立志读完《资治通鉴》,将来当一名历史学家。可是在初中二时学校新聘了一位从日本留学回来的杨老师,他觉得积弱的中国靠古老的历史和文学是救不了的,只能以科学才能救中国,因此这想法影响苏步青。

  “苏步青,我觉得你的历史和文学都学得挺好,可是我觉得你在学数学方面会有发展前途,今后应该多钻研数学,少看历史和诗词的书。”杨老师借给他看科学杂志,鼓励他学科学。

  于是苏步青的读书兴趣逐渐由文学转到理科,特别是对数学很有兴趣。他为了证明著名的欧几里得几何的一个定理:“任意三角形内角之和等于180°”,废寝忘食的找到二十个不同方法的证明,后来写成了一篇论文,送到浙江省的`一个学生作业展览会上展览。

  中学的校长洪彦远毕业于东京高等师范学校,是中国最早去日本学习数学的二人之一。他兼教平面几何,听到杨老师讲他班上15岁的苏步青勤奋好学的事,对他关注起来,常在同学自修时过来看苏步青的作业本,每看一道题,就露出一丝笑容,有时频频点头。洪校长对几何教得极好,非常欣赏苏步青的解法。有一天,洪校长把他叫到办公室,问了他一些学习及家庭情况之后,便觉得这孺子可教,而且可能是未来的国家栋梁,便对他说:“我要调离学校,到教育部去工作。你毕业后可以到日本去学习,我一定帮助你。”

  少年负笈赴东瀛

  对于洪校长的鼓励及器重,苏步青很是感激,这使他更勤奋的读书及钻研数学。当年中国教育是实施中学四年制,苏步青以第一名的优异成绩毕业。

  17岁时中学毕业了,他想起了洪校长的嘱咐,便写信给在教育部工作的洪彦远,表示想出国留学,可是却没有钱,想请他资助。过了不久,洪彦远就汇了200银元给他,并且勉励他为为国争光。苏步青捧着白花花的巨款,激动地滚下热泪,洪校长的钱是“及时雨”,这是改变他一生的转折点。

  1919年7月的一个秋天,苏步青乘日本海轮,从上海驶往日本。洪校长寄了临别赠言几句话:“天下兴亡,匹夫有责,要为中华富强而奋发读书。”后来他回忆往事写了《外滩夜归》的诗句:“渡头轻雨洒平沙,十里梧桐绿万家。犹记当时停泊处,少年负笈梦荣华。”

  他说1919年时中国是列强所任意宰割、任意瓜分的半封建半殖民地。英、美、法、日、意、德大小列强等国皆在中国有租借地,在上海的外滩公园就挂着“华人与狗不得入内”的牌子,在黄浦江上停泊的是英国、美国、日本等国家的军舰。而他到日本去每次都从黄浦江进出,每逢冬天都看见南京路上有冻死的人,他坐在日本的海轮上想:“我们自己还不会造船,有一天我们自己能造轮船就好了!”

  到日本后,他先去东京的东亚日语补习学校学习了一个月,后由熟人介绍住进一个日本家庭。他向房东大娘学日本文时,不仅早上和她一起去菜市场买菜,练习日语会话,并且晚上听她读报、讲故事,自己预习功课,准备投考东京高等工业学校。很快的他便掌握了初级的日本语言的能力了。

【数学家的名人故事】相关文章:

名人故事05-15

经典名人故事02-21

名人的故事02-08

名人故事08-02

经典名人故事05-19

身残志坚的名人故事02-20

尊严的名人故事05-13

名人宽容的故事05-16

梦想的名人故事05-17

数学的名人故事05-18